Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Biomedical and Environmental Sciences ; (12): 871-880, 2021.
Article in English | WPRIM | ID: wpr-921342

ABSTRACT

Objective@#Previous studies have shown that meteorological factors may increase COVID-19 mortality, likely due to the increased transmission of the virus. However, this could also be related to an increased infection fatality rate (IFR). We investigated the association between meteorological factors (temperature, humidity, solar irradiance, pressure, wind, precipitation, cloud coverage) and IFR across Spanish provinces ( @*Methods@#We estimated IFR as excess deaths (the gap between observed and expected deaths, considering COVID-19-unrelated deaths prevented by lockdown measures) divided by the number of infections (SARS-CoV-2 seropositive individuals plus excess deaths) and conducted Spearman correlations between meteorological factors and IFR across the provinces.@*Results@#We estimated 2,418,250 infections and 43,237 deaths. The IFR was 0.03% in < 50-year-old, 0.22% in 50-59-year-old, 0.9% in 60-69-year-old, 3.3% in 70-79-year-old, 12.6% in 80-89-year-old, and 26.5% in ≥ 90-year-old. We did not find statistically significant relationships between meteorological factors and adjusted IFR. However, we found strong relationships between low temperature and unadjusted IFR, likely due to Spain's colder provinces' aging population.@*Conclusion@#The association between meteorological factors and adjusted COVID-19 IFR is unclear. Neglecting age differences or ignoring COVID-19-unrelated deaths may severely bias COVID-19 epidemiological analyses.


Subject(s)
Adult , Aged , Aged, 80 and over , Humans , Middle Aged , Young Adult , COVID-19/virology , Meteorological Concepts , Pandemics/statistics & numerical data , SARS-CoV-2/physiology , Spain/epidemiology , Weather
SELECTION OF CITATIONS
SEARCH DETAIL